Functionally graded optimisation of adsorption systems with phase change materials

Author:

Prado D. S.ORCID,Amigo R. C. R.,Hewson R. W.,Silva E. C. N.

Abstract

AbstractAdsorption phenomena are encountered in several engineering applications. One of its uses is in the storage and transport of gas in the form of adsorption tanks. The exothermic nature of the adsorption process decreases adsorption capacity presenting an impetus to understand the thermal characteristics of the gas storage process. Studies using mixtures of phase change materials and adsorbents in adsorption tanks demonstrate potential improvements in the adsorption capacity of the tanks. They also show that the distribution of phase change materials and adsorbent are important. Thus, this work presents two approaches for optimising the adsorbent domain. The first is to use a semi-analytic model to determine the best homogeneous material concentration for the adsorbent and phase change material for the vessel composition. The other is to use a 2D axisymmetric model to perform FGM optimisation to distribute material in the tank. Results for both models are presented and discussed for different conditions. The study shows that, for the cylindrical geometry, FGM optimisation is always, at least, marginally better than the homogeneous distribution from the semi-analytic model. However, FGM optimisation demands more computing time increases the complexity of implementation and results assembling. The semi-analytic approach is a possible alternative for optimising adsorption systems with phase change material mixed with adsorbents.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3