Stress-constrained optimization using graded lattice microstructures

Author:

Thillaithevan DilaksanORCID,Bruce Paul,Santer Matthew

Abstract

AbstractIn this work, we propose a novel method for predicting stress within a multiscale lattice optimization framework. On the microscale, a scalable stress is captured for each microstructure within a large, full factorial design of experiments. A multivariate polynomial response surface model is used to represent the microstructure material properties. Unlike the traditional solid isotropic material with a penalization-based stress approach or using the homogenized stress, we propose the use of real microscale stress components with macroscale strains through linear superposition. To examine the accuracy of the multiscale stress method, full-scale finite element simulations with non-periodic boundary conditions were performed. Using a range of microstructure gradings, it was determined that 6 layers of microstructures were required to achieve periodicity within the full-scale model. The effectiveness of the multiscale stress model was then examined. Using various graded structures and two load cases, our methodology was shown to replicate the von Mises stress in the center of the unit lattice cells to within 10% in the majority of the test cases. Finally, three stress-constrained optimization problems were solved to demonstrate the effectiveness of the method. Two stress-constrained weight minimization problems were demonstrated, alongside a stress-constrained target deformation problem. In all cases, the optimizer was able to sufficiently reduce the objective while respecting the imposed stress constraint.

Funder

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3