Forecasting the nearly unforecastable: why aren’t airline bookings adhering to the prediction algorithm?

Author:

Thirumuruganathan Saravanan,Jung Soon-gyo,Ramirez Robillos Dianne,Salminen Joni,Jansen Bernard J.ORCID

Abstract

AbstractUsing 27 million flight bookings for 2 years from a major international airline company, we built a Next Likely Destination model to ascertain customers’ next flight booking. The resulting model achieves an 89% predictive accuracy using historical data. A unique aspect of the model is the incorporation of self-competence, where the model defers when it cannot reasonably make a recommendation. We then compare the performance of the Next Likely Destination model in a real-life consumer study with 35,000 actual airline customers. In the user study, the model obtains a 51% predictive accuracy. What happened? The Individual Behavior Framework theory provides insights into possibly explaining this inconsistency in evaluation outcomes. Research results indicate that algorithmic approaches in competitive industries must account for shifting customer preferences, changes to the travel environment, and confounding business effects rather than relying solely on historical data.

Funder

Qatar National Library

Publisher

Springer Science and Business Media LLC

Subject

Human-Computer Interaction,Economics, Econometrics and Finance (miscellaneous)

Reference89 articles.

1. Adamopoulos, P., & Tuzhilin, A. (2014). On unexpectedness in recommender systems: Or how to better expect the unexpected. ACM Transactions on Intelligent Systems and Technology (TIST), 5, 1–32.

2. Agarwal, A., Hsu, D., Kale, S., Langford, J., Li L., & Schapire, R. (2014). Taming the monster: A fast and simple algorithm for contextual bandits In: International Conference on Machine Learning, pp. 1638–1646.

3. Badami, M., & Nasraoui, O. (2018). Cross-domain hashtag recommendation and story revelation in social media In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4294–4303

4. Beel, J., Genzmehr, M., Langer, S., Nürnberger, A., & Gipp, B. (2013) A comparative analysis of offline and online evaluations and discussion of research paper recommender system evaluation In: The International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, pp. 7–14.

5. Benouaret, I., & Lenne, D. (2016). A package recommendation framework for trip planning activities. In: Presented at the Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Massachusetts, USA.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3