Proposing improved meta-heuristic algorithms for clustering and separating users in the recommender systems
Author:
Publisher
Springer Science and Business Media LLC
Subject
Human-Computer Interaction,Economics, Econometrics and Finance (miscellaneous)
Link
https://link.springer.com/content/pdf/10.1007/s10660-021-09478-9.pdf
Reference45 articles.
1. Sivapalan, S., Sadeghian, A., Rahnama, H., & Madni, A. M. (2014). Recommender systems in e-commerce. In 2014 World Automation Congress (WAC) (pp. 179–184). IEEE.
2. Yang, W., & Lin, Y. (2013). A task-focused literature recommender system for digital libraries. Online Information Review, 37(4), 581–601. https://doi.org/10.1108/OIR-10-2011-0172.
3. Qin, L., Xu, X., & Li, J. (2018). A real-time professional content recommendation system for healthcare providers’ knowledge acquisition. In International Conference on Big Data (pp. 367–371). Springer.
4. Alphy, A., & Prabakaran, S. (2015). A two-phase dynamic recommender system for improved web usage mining and personalization. International Review on Computers and Software, 10(12), 1244–1254. https://doi.org/10.15866/irecos.v10i12.7841.
5. Cheung, K.-W., Kwok, J. T., Law, M. H., & Tsui, K.-C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35(2), 231–243.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Use of Metaheuristics in the Evolution of Collaborative Filtering Recommender Systems: A Review;Lecture Notes in Computer Science;2024
2. Incomplete Multi-View Clustering Based on Dynamic Dimensionality Reduction Weighted Graph Learning;IEEE Access;2024
3. An efficient meta-heuristic algorithm based on water flow optimizer for data clustering;The Journal of Supercomputing;2023-12-21
4. Dietary Behavior Based Food Recommender System Using Deep Learning and Clustering Techniques;Wasit Journal of Computer and Mathematics Science;2023-06-30
5. Clustering Methods and Tools to Handle High-Dimensional Social Media Text Data;Advances in Social Networking and Online Communities;2023-06-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3