1. Chakraborty, S., & Das, S. (2017). k Means clustering with a new divergence-based distance measure: Convergence and performance analysis. Pattern Recognition Letters, 100, 67–73.
2. Ailon, N., Jaiswal, R., & Monteleoni, C. (2009). Streaming K-means approximation. International Conference on Neural Information Processing Systems.
3. Albanese, A., Pal, S. K., & Petrosino, A. (2011). A rough set approach to spatio-temporal outlier detection. Berlin Heidelberg: Springer.
4. Arthur, D., & Vassilvitskii, S. (2007). K-Means++: The advantages of careful seeding. proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7–9, 2007.
5. Breunig, M. M., Kriegel, H. P., Ng, R., & Sander, J. (2000). LOF: Identifying density-based local outliers. Acm Sigmod Record, 29(2), 93–104.