Abstract
AbstractGeneralizing the first-order shear deformation plate theory (FOPT) proposed by Ambartsumyan (Theory of anisotropic plates, Nauka, Moscow, 1967 (in Russian)) to the heterogeneous laminated nanocomposite plates and the nonlinear vibration problem is analytically solved taking into account an elastic medium in this study for the first time. The Pasternak-type elastic foundation model (PT-EF) is used as the elastic medium model. After creating the mathematical models of laminated rectangular plates with CNT originating layers on the PT-EF, the large amplitude stress–strain relationships and motion equations are derived in the form of nonlinear partial differential equations (PDEs) within FOPT. Then, by applying Galerkin's method to the derived equations, it is reduced to a nonlinear ordinary differential equation (NL-ODE) containing the second- and third-order nonlinear terms of the deflection function for laminated rectangular plates composed of nanocomposite layers. The NL-ODE is solved by the semi-inverse method, and the nonlinear frequency–amplitude relationship for the laminated plates consisting of CNT originating layers resting on the PT-EF is established within FOPT for the first time. From these relations, similar relations can be obtained particularly for the unconstrained laminated and monolayer CNT patterns plates. After comparing the accuracy of the obtained formulas with the reliable results in the literature, comprehensive numerical analyses are performed.
Funder
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献