Accelerated cuckoo optimization algorithm for the multi-objective welding process

Author:

Mellal Mohamed ArezkiORCID,Salhi Abdellah,Williams Edward J.

Abstract

AbstractWelding is a well-known process in manufacturing industries due to its importance. Several process parameters should be tuned in order to perform a high-quality welding. Usually, the problem is described as an optimization one and the challenge is to reconcile conflicting objectives. This paper deals with a multi-objective welding process namely the submerged arc welding process, involving five objectives. The weighted sum approach is used to handle it. An accelerated cuckoo optimization algorithm is implemented for this process model and applied to a practical instance of it. On this practical example, the superiority of the proposed optimization technique has been demonstrated in terms of better solutions and fewer required generations of the cuckoos relative to the basic COA and four other optimization algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Optimization of Welding Processes Using Modified Rao Algorithms;Journal of Advanced Manufacturing Systems;2023-12-27

2. Optimal conventional and nonconventional machining processes via particle swarm optimization and flower pollination algorithm;Soft Computing;2023-10-24

3. Multi-objective factors optimization in fused deposition modelling with particle swarm optimization and differential evolution;International Journal on Interactive Design and Manufacturing (IJIDeM);2022-03-25

4. System reliability-redundancy allocation by the multiobjective plant propagation algorithm;International Journal of Quality & Reliability Management;2021-04-30

5. Weld optimisation;Science and Technology of Welding and Joining;2021-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3