Machining of a functional hip prosthesis cone in TI-6AL-4V ELI titanium alloy produced by electron beam melting

Author:

Festas A. J.ORCID,Ramos A.ORCID,Davim J. P.ORCID

Abstract

AbstractDigital manufacturing using 3D models and innovative fabrication methods present challenges for functional areas of medical devices. The advantages arising from 3D manufacturing processes like electron beam melting (EBM) play a major role in producing medical devices as, for example, orthopaedic implants. However, surfaces with functional demands for surface roughness and dimensional accuracy require machining operations to achieve the necessary standards. This study aimed to manufacture a functional cone of the modular component of the hip prosthesis through turning and to assess if an EBM-obtained component could offer better machinability as compared to wrought titanium and ensure functionality. To achieve this, the variances in cutting forces and surface roughness of the resulting surface were analysed during the turning tests. The results show that the EBM test samples had higher roughness (Ra) values, yet it was possible to achieve Ra = 0.4 μm for f = 0.1 mm/rev. and approximately 20% lower resulting cutting forces, for example, for f = 0.1 mm/rev, 122N compared to 101N. Using the Kienzle-Victor model, the specific cutting force of titanium EBM was determined to be 1775 N/mm2. The impact of the shell geometry of the EBM test samples had no significant effect on the results. This allows for the exploration of its potential in component design, as it provides an economic advantage in manufacturing. In conclusion, the cutting forces and surface roughness showed similar or superior machinability compared to that of wrought titanium. The EBM technology enables the production of intricate forms and facilitates finishing operations in functional zones.

Funder

Universidade de Aveiro

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3