Self-diffusion in nanofluids of nonelongated particles in the dilute limit

Author:

Fariñas Alvariño P.ORCID,Sáiz Jabardo J. M.ORCID,Cabezas-Gómez L.ORCID

Abstract

AbstractThe dynamic features of a dilute suspension of nanoparticles (nanofluid) are fully modified depending on the dominant particles slip mechanism acting in the suspension. Self-diffusion effects in highly sheared diluted suspensions (entrance conditions and microapplications) can lead to a particles distribution fully different from the bulk one. The reported investigation proposes a model to determine the self-diffusion of three-planes symmetric nonelongated particles inmersed in a sheared Stokes flow. The model is based on the real displacements between any pair of particles and an statistical approach to determine contact kinematic irreversibilities. According to the proposed model, the source of hydrodynamic irreversibility is closely related to the particles shape. This is clearly demonstrated through the application of the model to cubic particles. The main conclusion is that the particles shape plays a significant role in the dynamic behavior of the suspension and, as a result, in the self-diffusion coefficient. The reported results arising from the cubic particles trajectories in a Stokes flow are reasonably close to the ones reported by Brady and Morris (J Fluid Mech, 348:103–139, 1997) for suspensions under high Pe number, and Zarraga and Leighton (Phys Fluids 13(3):565-577, 2001).

Funder

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3