Hybrid deposition additive manufacturing: novel volume distribution, thermo-mechanical characterization, and image analysis

Author:

Harris MuhammadORCID,Mohsin Hammad,Potgieter Johan,Arif Khalid Mahmood,Anwar Saqib,AlFaify Abdullah,Farooq Muhammad Umar

Abstract

AbstractThe structural integrity of additive manufacturing structures is a pronounced challenge considering the voids and weak layer-to-layer adhesion. One of the potential ways is hybrid deposition manufacturing (HDM) that includes fused filament fabrication (FFF) with the conventional filling process, also known as “HDM composites". HDM is a potential technique for improving structural stability by replacing the thermoplastic void structure with a voidless epoxy. However, the literature lacks investigation of FFF/epoxy HDM-based composites regarding optimal volume distribution, effects of brittle and ductile FFF materials, and fractographic analysis. This research presents the effects of range of volume distributions (10–90%) between FFF and epoxy system for tensile, flexure, and compressive characterization. Volume distribution in tensile and flexure samples is achieved using printable wall thickness, slot width, and maximum width. For compression, the printable wall thickness, slot diameter, and external diameter are considered. Polylactic acid and acrylonitrile butadiene styrene are used to analyze the brittle and ductile FFF structures. The research reports novel application of image analysis during mechanical characterization using high-quality camera and fractographic analysis using scanning electron microscopy (SEM). The results present surprising high tensile strain (0.038 mm/mm) and compressive strength (64.5 MPa) for lower FDM-percentages (10%, 20%) that are explained using in situ image analysis, SEM, stress–strain simulations, and dynamic mechanical analysis (DMA). In this regard, the proposed work holds novelty to apply DMA for HDM. The optimal volume distributions of 70% and 80% alongside fractographic mechanisms for lower percentages (10%, 20%) can potentially contribute to structural applications and future material-based innovations for HDM.

Funder

King Saud University

Massey University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3