Computer-aided diagnosis of Alzheimer’s disease and neurocognitive disorders with multimodal Bi-Vision Transformer (BiViT)

Author:

Shah S. Muhammad Ahmed Hassan,Khan Muhammad Qasim,Rizwan Atif,Jan Sana UllahORCID,Samee Nagwan Abdel,Jamjoom Mona M.

Abstract

AbstractCognitive disorders affect various cognitive functions that can have a substantial impact on individual’s daily life. Alzheimer’s disease (AD) is one of such well-known cognitive disorders. Early detection and treatment of cognitive diseases using artificial intelligence can help contain them. However, the complex spatial relationships and long-range dependencies found in medical imaging data present challenges in achieving the objective. Moreover, for a few years, the application of transformers in imaging has emerged as a promising area of research. A reason can be transformer’s impressive capabilities of tackling spatial relationships and long-range dependency challenges in two ways, i.e., (1) using their self-attention mechanism to generate comprehensive features, and (2) capture complex patterns by incorporating global context and long-range dependencies. In this work, a Bi-Vision Transformer (BiViT) architecture is proposed for classifying different stages of AD, and multiple types of cognitive disorders from 2-dimensional MRI imaging data. More specifically, the transformer is composed of two novel modules, namely Mutual Latent Fusion (MLF) and Parallel Coupled Encoding Strategy (PCES), for effective feature learning. Two different datasets have been used to evaluate the performance of proposed BiViT-based architecture. The first dataset contain several classes such as mild or moderate demented stages of the AD. The other dataset is composed of samples from patients with AD and different cognitive disorders such as mild, early, or moderate impairments. For comprehensive comparison, a multiple transfer learning algorithm and a deep autoencoder have been each trained on both datasets. The results show that the proposed BiViT-based model achieves an accuracy of 96.38% on the AD dataset. However, when applied to cognitive disease data, the accuracy slightly decreases below 96% which can be resulted due to smaller amount of data and imbalance in data distribution. Nevertheless, given the results, it can be hypothesized that the proposed algorithm can perform better if the imbalanced distribution and limited availability problems in data can be addressed. Graphical abstract

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3