High-dimensional image data feature extraction by double discriminant embedding
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition
Link
http://link.springer.com/content/pdf/10.1007/s10044-015-0513-z.pdf
Reference27 articles.
1. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton JC, Trianni G (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113(suppl. 1):110–122
2. Hughes GF (1968) On the mean accuracy of statistical pattern recognition. IEEE Trans Inf Theory 14(1):55–63
3. Ladha L, Deepa T (2011) Feature selection methods and algorithms. Int J Comp Sci Eng 3(5):1787–1797
4. Yin J, Wang Y, Hu J (2012) A new dimensionality reduction algorithm for hyperspectral image data using evolutionary strategy. IEEE Trans Ind Inf 8(4):935–943
5. Bruzzone L, Persello C (2009) A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability. IEEE Trans Geosci Remote Sens 47(9):3180–3191
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Effective Feature Extraction Approach Based on Spectral-Gabor Space Discriminant Analysis for Hyperspectral Image;Neural Processing Letters;2021-10-23
2. A hybrid discriminant embedding with feature selection: application to image categorization;Applied Intelligence;2020-11-09
3. Object-based feature extraction for hyperspectral data using firefly algorithm;International Journal of Machine Learning and Cybernetics;2019-11-23
4. A Novel Geometric Mean Feature Space Discriminant Analysis Method for Hyperspectral Image Feature Extraction;Neural Processing Letters;2019-08-13
5. Morphology‐based structure‐preserving projection for spectral–spatial feature extraction and classification of hyperspectral data;IET Image Processing;2019-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3