Action recognition by key trajectories

Author:

Camarena FernandoORCID,Chang Leonardo,Gonzalez-Mendoza Miguel,Cuevas-Ascencio Ricardo J

Abstract

AbstractHuman action recognition is an active field of research that intends to explain what a subject is doing in an input video. Deep learning architectures serve as the foundation for cutting-edge approaches. Recent research, on the other hand, indicates that hand-crafted characteristics are complementary and, when combined, can enhance classification accuracy. Cutting-edge approaches are based on deep learning architectures. Recent research, however, indicates that hand-crafted features complement each other and can help boost classification accuracy when combined. We introduce the key trajectories approach that is based on the popular, hand-crafted method, improved dense trajectories. Our work explores how pose estimation can be used to find meaningful key points to reduce computational time, undesired noise, and to guarantee a stable frame processing rate. Furthermore, we tested how feature-tracking behaves with dense inverse search and with a frame to frame subject key point estimation. Our proposal was tested on the KTH and UCF11 datasets employing Bag-of-words and on the UCF50 and HMDB datasets using Fisher Vector, where we got an accuracy performance of 95.71, 84.88, 92.9, and 81.3%, respectively. Also, our proposal can recognize subject actions in video eight times faster compared to its dense counterpart. To maximize the bag-of-words classification performance, we illustrate how the hyperparameters affect both accuracy and computation time. Precisely, we present an exploration of the vocabulary size, the SVM hyperparameter, the descriptor’s distinctiveness, and the subject body key points.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global spatio-temporal synergistic topology learning for skeleton-based action recognition;Pattern Recognition;2023-08

2. An Overview of the Vision-Based Human Action Recognition Field;Mathematical and Computational Applications;2023-04-13

3. Correction to: Action recognition by key trajectories;Pattern Analysis and Applications;2022-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3