Segmenting large historical notarial manuscripts into multi-page deeds

Author:

Prieto Jose RamónORCID,Becerra David,Toselli Alejandro HectorORCID,Alonso CarlosORCID,Vidal EnriqueORCID

Abstract

AbstractArchives around the world hold vast digitized series of historical manuscript books or “bundles” containing, among others, notarial records also known as “deeds” or “acts”. One of the first steps to provide metadata which describe the contents of those bundles is to segment them into their individual deeds. Even if deeds are often page-aligned, as in the bundles considered in the present work, this is a time-consuming task, often prohibitive given the huge scale of the manuscript series involved. Unlike traditional Layout Analysis methods for page-level segmentation, our approach goes beyond the realm of a single-page image, providing consistent deed detection results on full bundles. This is achieved in two tightly integrated steps: first, we estimate the class-posterior at the page level for the “initial”, “middle”, and “final” classes; then we “decode” these posteriors applying a series of sequentiality consistency constraints to obtain a consistent book segmentation. Experiments are presented for four large historical manuscripts, varying the number of “deeds” used for training. Two metrics are introduced to assess the quality of book segmentation, one of them taking into account the loss of information entailed by segmentation errors. The problem formalization, the metrics and the empirical work significantly extend our previous works on this topic.

Funder

Ministerio de Ciencia e Innovación

Universitat Politècnica de València

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3