Abstract
AbstractWe present a discriminative learning algorithm for the probabilistic estimation of two-dimensional probabilistic context-free grammars (2D-PCFG) for mathematical expressions recognition and retrieval. This algorithm is based on a generalization of the H-criterion as the objective function and the growth transformations as the optimization method. For the development of the discriminative estimation algorithm, the N-best interpretations provided by the 2D-PCFG have been considered. Experimental results are reported on two available datasets: Im2Latex and IBEM. The first experiment compares the proposed discriminative estimation method with the classic Viterbi-based estimation method. The second one studies the performance of the estimated models depending on the length of the mathematical expressions and the number of admissible errors in the metric used.
Funder
Universitat Politècnica de València
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献