Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis

Author:

Berrone Stefano,Canuto Claudio,Pintore Moreno

Abstract

AbstractWe consider the discretization of elliptic boundary-value problems by variational physics-informed neural networks (VPINNs), in which test functions are continuous, piecewise linear functions on a triangulation of the domain. We define an a posteriori error estimator, made of a residual-type term, a loss-function term, and data oscillation terms. We prove that the estimator is both reliable and efficient in controlling the energy norm of the error between the exact and VPINN solutions. Numerical results are in excellent agreement with the theoretical predictions.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference22 articles.

1. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

2. Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., Barajas-Solano, D.: Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint arXiv:1808.03398 (2018)

3. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 394, 136–152 (2019)

4. Lanthalet, S., Mishra, S., Karniadakis, G.E.: Error estimates for deeponets: a deep learning framework in infinite dimensions. arXiv preprint arXiv:2102.09618v2 (2021)

5. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: VPINNs: variational physics-informed neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873 (2019)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3