Abstract
AbstractFor a Calabi–Yau variety X, Oguiso (Math Res Lett 25(1):181–198, 2018) gave a useful criterion for primitivity of a self-map of X in terms of the associated linear map on the Néron–Severi space of X. In this short note, we prove a variant of Oguiso’s criterion and use it to verify primitivity of a certain birational automorphism of a Calabi–Yau threefold, to which Oguiso’s original criterion does not apply.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Amerik, E., Campana, F.: Fibrations méromorphes sur certaines variétés à fibré canonique trivial. Pure Appl. Math. Q., 4(2, Special Issue: In honor of Fedor Bogomolov. Part 1), 509–545, (2008)
2. Dinh, T.-C., Sibony, N.: Une borne supérieure pour l’entropie topologique d’une application rationnelle. Ann. Math. 161(3), 1637–1644 (2005)
3. Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. 49(3–4), 217–235 (2003)
4. Hoff, M., Stenger, I., Yáñez, J.I.: Movable cones of complete intersections of multidegree one on products of projective spaces, (2022). arXiv:2207.11150
5. Kawamata, Y.: Abundance theorem for minimal threefolds. Invent. Math. 108(2), 229–246 (1992)