1. H. Cohen and H.W. Lenstra, Jr. Heuristics on class groups of number fields. In: Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., Springer, Berlin (1984), pp. 33–62.
2. Cohn H., Lagarias J.C. (1983) On the existence of fields governing the 2-invariants of the classgroup of Q $${(\sqrt{dp})}$$ ( d p ) as p varies. Math. Comp., 41(164): 711–730
3. H. Cohn and J.C. Lagarias. Is there a density for the set of primes p such that the class number of Q $${(\sqrt{-p})}$$ ( - p ) is divisible by 16? In: Topics in classical number theory, Vol. I, II (Budapest, 1981), volume 34 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam (1984), pp. 257–280.
4. D. A. Cox. Primes of the form x 2 + ny 2. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1989). Fermat, class field theory and complex multiplication.
5. Davenport H.: On a principle of Lipschitz. J. London Math. Soc., 26, 179–183 (1951)