Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference33 articles.
1. P. Austrin, E. Mossel, Approximation resistant predicates from pairwise independence, in “23rd Annual IEEE Conference on Computational Complexity”, Los Alamitos, CA, USA, IEEE Computer Society (2008), 249–258.
2. P. Austrin, E. Mossel, Approximation resistant predicates from pairwise independence, Computational Complexity, to appear.
3. Beckner W.: Inequalities in Fourier analysis. Ann. of Math. (2) 10(1), 159–182 (1975)
4. Bell C.E.: A random voting graph almost surely has a hamiltonian cycle when the number of alternatives is large. Econometrica 49(6), 1597–1603 (1981)
5. Bonami A.: Étude des coefficients de Fourier des fonctions de L p (G). Ann. Inst. Fourier (Grenoble) 20(2), 335–402 (1971)
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A phase transition in Arrow’s theorem with three alternatives;The Annals of Applied Probability;2024-08-01
2. Dimension-Free Noninteractive Simulation From Gaussian Sources;IEEE Transactions on Information Theory;2024-08
3. How Random CSPs Fool Hierarchies;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10
4. On Approximability of Satisfiable k-CSPs: IV;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10
5. Forbidden intersections for codes;Journal of the London Mathematical Society;2023-08-08