Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference76 articles.
1. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with
$$\sigma $$
σ
-finite measure. Transactions of the American Mathematical Society 367(7), 4661–4701 (2015)
2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: in Metric Spaces and in the Space of Probability Measures. Lectures in math, Springer, Berlin (2008)
3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Mathematical Journal 163(7), 1405–1490 (2014)
4. S. Andrea. An example of a differentiability space which is PI-unrectifiable, arXiv preprint
arXiv:1611.01615
(2016)
5. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. Journal of Functional Analysis 259(1), 28–56 (2010)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献