Poincaré profiles of Lie groups and a coarse geometric dichotomy

Author:

Hume David,Mackay John M.,Tessera Romain

Abstract

AbstractPoincaré profiles are analytically defined invariants, which provide obstructions to the existence of coarse embeddings between metric spaces. We calculate them for all connected unimodular Lie groups, Baumslag–Solitar groups and Thurston geometries, demonstrating two substantially different types of behaviour. For Lie groups, our dichotomy extends both the rank one versus higher rank dichotomy for semisimple Lie groups and the polynomial versus exponential growth dichotomy for solvable unimodular Lie groups. We provide equivalent algebraic, quasi-isometric and coarse geometric formulations of this dichotomy. As a consequence, we deduce that for groups of the form $$N\times S$$ N × S , where N is a connected nilpotent Lie group, and S is a rank one simple Lie group, both the growth exponent of N, and the conformal dimension of S are non-decreasing under coarse embeddings. These results are new even for quasi-isometric embeddings and give obstructions which in many cases improve those previously obtained by Buyalo–Schroeder.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Analysis

Reference48 articles.

1. P. Assouad. Plongements lipschitziens dans $${\bf R}^{n}$$. Bull. Soc. Math. France, (4)111 (1983), 429–448

2. New Mathematical Monographs;B Bekka,2008

3. M. Bestvina. Questions in Geometric Group Theory. https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf, (2004).

4. M. Bourdon. Immeubles hyperboliques, dimension conforme et rigidité de Mostow. Geom. Funct. Anal. (2)7 (1997), 245–268

5. M. Bourdon and H. Pajot. Cohomologie $$l_p$$ et espaces de Besov. J. Reine Angew. Math., 558 (2003), 85–108

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regular maps from the lamplighter to metabelian groups;Bulletin of the London Mathematical Society;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3