Flows on measurable spaces

Author:

Lovász László

Abstract

AbstractThe theory of graph limits is only understood to a somewhat satisfactory degree in the cases of dense graphs and of bounded degree graphs. There is, however, a lot of interest in the intermediate cases. It appears that one of the most important constituents of graph limits in the general case will be Markov spaces (Markov chains on measurable spaces with a stationary distribution). This motivates our goal to extend some important theorems from finite graphs to Markov spaces or, more generally, to measurable spaces. In this paper, we show that much of flow theory, one of the most important areas in graph theory, can be extended to measurable spaces. Surprisingly, even the Markov space structure is not fully needed to get these results: all we need a standard Borel space with a measure on its square (generalizing the finite node set and the counting measure on the edge set). Our results may be considered as extensions of flow theory for directed graphs to the measurable case.

Funder

ELKH Alfréd Rényi Institute of Mathematics

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3