Author:
Catino Giovanni,Mastrolia Paolo,Roncoroni Alberto
Abstract
AbstractThe aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in R4, while they do not exist in positively curved closed Riemannian (n+1)-manifold when n≤5; in particular, there are no stable minimal hypersurfaces in Sn+1 when n≤5. The first result was recently proved also by Chodosh and Li, and the second is a consequence of a more general result concerning minimal surfaces with finite index. Both theorems rely on a conformal method, inspired by a classical work of Fischer-Colbrie.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sharp pinching theorems for complete submanifolds in the sphere;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-07-02