Reinforcement learning as a basis for cross domain fusion of heterogeneous data

Author:

Christensen SörenORCID,Tomforde SvenORCID

Abstract

AbstractWe propose to establish a research direction based on Reinforcement Learning in the scope of Cross Domain Fusion. More precisely, we combine the algorithmic approach of evolutionary rule-based Reinforcement Learning with the efficiency and performance of Deep Reinforcement Learning, while simultaneously developing a sound mathematical foundation. A possible scenario is traffic control in urban regions.

Funder

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Information Systems

Reference9 articles.

1. Bertsekas DP (2019) Reinforcement learning and optimal control. Athena Scientific, Belmont

2. Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: International conference on robotics and automation. IEEE, pp 3389–3396

3. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

4. arXiv preprint arXiv:1312.5602;V Mnih,2013

5. Lectures in Mathematics ETH Zürich;G Peskir,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3