Abstract
Abstract
Human-induced eutrophication, resulting in increased algal growth and water turbidity, is an alarming problem in aquatic systems. Many studies have focused on the effects of algal turbidity on mate choice and sexual selection in fish, but little emphasis has been given to the ways it can constrain mating success. Here we experimentally investigated the effects of algal turbidity on maximum male mating success and parental care in the sand goby, Pomatoschistus minutus, a fish with a resource-defence mating system and male parental care. For this purpose, we introduced to 1 nest-holding male 5 random-sized ripe females in either clear or in turbid water. After spawning, we observed how many mates and eggs the male received and followed his parental behaviour and egg survival for 6 days under turbid or clear water conditions. When spawning took place in clear water, the number of eggs the male received into his nest increased with the total weight of five females in his tank. However, when spawning took place in turbid water, there was no relationship between female size and the number of eggs laid, although the number of females that spawned was the same as in clear water. The results indicate that females adjust the number of eggs they lay according to water turbidity. This could explain previous findings that mating success is more evenly distributed among males in turbid than clear water conditions.
Significance statement
The first responses of animals to human-induced changes in the environment are behavioural. Subtle changes in the behaviour of individuals can have profound consequences for populations and communities. Human-induced eutrophication, leading to algal blooms and water turbidity, is a major environmental problem in aquatic systems worldwide. Our results on the sand goby suggest a new mechanism by which water turbidity may affect fish mating systems and weaken sexual selection. When spawning takes place in clear water, the number of eggs accumulated in a males’ nest is an increasing function of the fecundity of the females. However, when spawning in turbid water, this positive relationship between female size and egg numbers disappears. We believe this is because females do not perceive the competition from other females in turbid water and therefore invest less in present reproduction.
Funder
Biotieteiden ja Ympäristön Tutkimuksen Toimikunta
Onni Talas foundation
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference41 articles.
1. Bagenal TB (1967) A short review of fish fecundity. In: Gerking SD (ed) The biological basis of freshwater fish production. Blackwell Scientific Publishers, Oxford, pp 89–111
2. Candolin U, Engström-Öst J, Salesto T (2008) Human-induced eutrophication enhances reproductive success through effects on parenting ability in sticklebacks. Oikos 117:459–465
3. Coleman RM, Fischer RU (1991) Brood size, male fanning effort and the energetics of a nonshareable parental investment in bluegill sunfish, Lepomis macrochirus (Teleostei: Centrarchidae). Ethology 87:177–188
4. Engström-Öst J, Candolin U (2007) Human-induced water turbidity alters selection on sexual displays in sticklebacks. Behav Ecol 18:393–398
5. Evans JP, Box TM, Brooshooft P, Tatler JR, Fitzpatrick JL (2010) Females increase egg deposition in favor of large males in the rainbowfish, Melanotaenia australis. Behav Ecol 21:465–469
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献