Parameterizing animal sounds and motion with animal-attached tags to study acoustic communication

Author:

Casoli MarcoORCID,Johnson MarkORCID,McHugh Katherine A.ORCID,Wells Randall S.ORCID,Tyack Peter L.ORCID

Abstract

Abstract Stemming from the traditional use of field observers to score states and events, the study of animal behaviour often relies on analyses of discrete behavioural categories. Many studies of acoustic communication record sequences of animal sounds, classify vocalizations, and then examine how call categories are used relative to behavioural states and events. However, acoustic parameters can also convey information independent of call type, offering complementary study approaches to call classifications. Animal-attached tags can continuously sample high-resolution behavioural data on sounds and movements, which enables testing how acoustic parameters of signals relate to parameters of animal motion. Here, we present this approach through case studies on wild common bottlenose dolphins (Tursiops truncatus). Using data from sound-and-movement recording tags deployed in Sarasota (FL), we parameterized dolphin vocalizations and motion to investigate how senders and receivers modified movement parameters (including vectorial dynamic body acceleration, “VeDBA”, a proxy for activity intensity) as a function of signal parameters. We show that (1) VeDBA of one female during consortships had a negative relationship with centroid frequency of male calls, matching predictions about agonistic interactions based on motivation-structural rules; (2) VeDBA of four males had a positive relationship with modulation rate of their pulsed vocalizations, confirming predictions that click-repetition rate of these calls increases with agonism intensity. Tags offer opportunities to study animal behaviour through analyses of continuously sampled quantitative parameters, which can complement traditional methods and facilitate research replication. Our case studies illustrate the value of this approach to investigate communicative roles of acoustic parameter changes. Significance statement Studies of animal behaviour have traditionally relied on classification of behavioural patterns and analyses of discrete behavioural categories. Today, technologies such as animal-attached tags enable novel approaches, facilitating the use of quantitative metrics to characterize behaviour. In the field of acoustic communication, researchers typically classify vocalizations and examine usage of call categories. Through case studies of bottlenose dolphin social interactions, we present here a novel tag-based complementary approach. We used high-resolution tag data to parameterize dolphin sounds and motion, and we applied continuously sampled parameters to examine how individual dolphins responded to conspecifics’ signals and moved while producing sounds. Activity intensity of senders and receivers changed with specific call parameters, matching our predictions and illustrating the value of our approach to test communicative roles of acoustic parameter changes. Parametric approaches can complement traditional methods for animal behaviour and facilitate research replication.

Funder

Dolphin Quest, Inc.

School of Biology, University of St Andrews

Scottish Universities Life Sciences Alliance

Office of Naval Research

Marine Alliance for Science and Technology for Scotland

Strategic Environmental Research and Development Program

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference144 articles.

1. Altmann J (1974) Observational study of behaviour: sampling methods. Behaviour 49:227–266

2. Andrews RD, Baird RW, Calambokidis J et al (2019) Best practice guidelines for cetacean tagging. J Cetacean Res Manage 20:27–66

3. Arranz P, DeRuiter SL, Stimpert AK, Neves S, Friedlaender AS, Goldbogen JA, Visser F, Calambokidis J, Southall BL, Tyack PL (2016) Discrimination of fast click-series produced by tagged Risso’s dolphins (Grampus griseus) for echolocation or communication. J Exp Biol 219:2898–2907

4. Au WWL (1993) The sonar of dolphins. Springer, New York

5. August PV, Anderson JG (1987) Mammal sounds and motivation-structural rules: a test of the hypothesis. J Mammal 68:1–9

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studying dolphin physiology;The Physiology of Dolphins;2024

2. Drone Perspectives on Cetacean Mating and Sex;Sex in Cetaceans;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3