Biologically meaningful moonlight measures and their application in ecological research

Author:

Śmielak Michał KrysztofORCID

Abstract

Abstract Light availability is one of the key drivers of animal activity, and moonlight is the brightest source of natural light at night. Moon phase is commonly used but, while convenient, it can be a poor proxy for lunar illumination on the ground. While the moon phase remains effectively constant within a night, actual moonlight intensity is affected by multiple factors such as disc brightness, position of the moon, distance to the moon, angle of incidence, and cloud cover. A moonlight illumination model is presented for any given time and location, which is significantly better at predicting lunar illumination than moon phase. The model explains up to 92.2% of the variation in illumination levels with a residual standard error of 1.4%, compared to 60% explained by moon phase with a residual standard error of 22.6%. Importantly, the model not only predicts changes in mean illumination between nights but also within each night, providing greater temporal resolution of illumination estimates. An R package moonlit facilitating moonlight illumination modelling is also presented. Using a case study, it is shown that modelled moonlight intensity can be a better predictor of animal activity than moon phase. More importantly, complex patterns of activity are shown where animals focus their activity around certain illumination levels. This relationship could not be identified using moon phase alone. The model can be universally applied to a wide range of ecological and behavioural research, including existing datasets, allowing a better understanding of lunar illumination as an ecological resource. Significance statement Moon phase is often used to represent lunar illumination as an environmental niche, but it is a poor proxy for actual moonlight intensity on the ground. A model is therefore proposed to estimate lunar illumination for any given place and time. The model is shown to provide a significantly better prediction of empirically measured lunar illumination than moon phase. Importantly, it also has much higher temporal resolutions, allowing to not only detect selectiveness for light levels between nights but also within each night, which is not achievable with moon phase alone. This offers unprecedented opportunities to study complex activity patterns of nocturnal species using any time-stamped data (GPS trackers, camera traps, song meters, etc.). It can also be applied to historical datasets, as well as facilitate future research planning in a wide range of ecological and behavioural studies.

Funder

Department of Education and Training, Australian Government

Invasive Animals Cooperative Research Centre

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3