Social information-mediated population dynamics in non-grouping prey

Author:

Tóth ZoltánORCID,Csöppü Gabriella

Abstract

Abstract Inadvertent social information (ISI) use, i.e., the exploitation of social cues including the presence and behaviour of others, has been predicted to mediate population-level processes even in the absence of cohesive grouping. However, we know little about how such effects may arise when the prey population lacks social structure beyond the spatiotemporal autocorrelation originating from the random movement of individuals. In this study, we built an individual-based model where predator avoidance behaviour could spread among randomly moving prey through the network of nearby observers. We qualitatively assessed how ISI use may affect prey population size when cue detection was associated with different probabilities and fitness costs, and characterised the structural properties of the emerging detection networks that would provide pathways for information spread in prey. We found that ISI use was among the most influential model parameters affecting prey abundance and increased equilibrium population sizes in most examined scenarios. Moreover, it could substantially contribute to population survival under high predation pressure, but this effect strongly depended on the level of predator detection ability. When prey exploited social cues in the presence of high predation risk, the observed detection networks consisted of a large number of connected components with small sizes and small ego networks; this resulted in efficient information spread among connected individuals in the detection networks. Our study provides hypothetical mechanisms about how temporary local densities may allow information diffusion about predation threats among conspecifics and facilitate population stability and persistence in non-grouping animals. Significance statement The exploitation of inadvertently produced social cues may not only modify individual behaviour but also fundamentally influence population dynamics and species interactions. Using an individual-based model, we investigated how the detection and spread of adaptive antipredator behaviour may cascade to changes in the demographic performance of randomly moving (i.e., non-grouping) prey. We found that social information use contributed to population stability and persistence by reducing predation-related per capita mortality and raising equilibrium population sizes when predator detection ability reached a sufficient level. We also showed that temporary detection networks had structural properties that allowed efficient information spread among prey under high predation pressure. Our work represents a general modelling approach that could be adapted to specific predator-prey systems and scrutinise how temporary local densities allow dynamic information diffusion about predation threats and facilitate population stability in non-grouping animals.

Funder

Prémium Postdoctoral Research Programme of the Hungarian Academy of Sciences

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund

Young Researcher Programme of the Hungarian Academy of Sciences

ELKH Centre for Agricultural Research

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3