Common permutation methods in animal social network analysis do not control for non-independence

Author:

Hart Jordan D. A.,Weiss Michael N.,Brent Lauren J. N.,Franks Daniel W.

Abstract

AbstractThe non-independence of social network data is a cause for concern among behavioural ecologists conducting social network analysis. This has led to the adoption of several permutation-based methods for testing common hypotheses. One of the most common types of analysis is nodal regression, where the relationships between node-level network metrics and nodal covariates are analysed using a permutation technique known as node-label permutations. We show that, contrary to accepted wisdom, node-label permutations do not automatically account for the non-independences assumed to exist in network data, because regression-based permutation tests still assume exchangeability of residuals. The same assumption also applies to the quadratic assignment procedure (QAP), a permutation-based method often used for conducting dyadic regression. We highlight that node-label permutations produce the same p-values as equivalent parametric regression models, but that in the presence of non-independence, parametric regression models can also produce accurate effect size estimates. We also note that QAP only controls for a specific type of non-independence between edges that are connected to the same nodes, and that appropriate parametric regression models are also able to account for this type of non-independence. Based on this, we suggest that standard parametric models could be used in the place of permutation-based methods. Moving away from permutation-based methods could have several benefits, including reducing over-reliance on p-values, generating more reliable effect size estimates, and facilitating the adoption of causal inference methods and alternative types of statistical analysis.

Funder

Engineering and Physical Sciences Research Council

H2020 European Research Council

National Institutes of Health

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3