Bumblebee cognitive abilities are robust to changes in colony size

Author:

Hill Luke,Gérard MaxenceORCID,Hildebrandt Frida,Baird Emily

Abstract

Abstract Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebeeBombus terrestriswas used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size.Significance statementWhile anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebeeBombus terrestrisand that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.

Funder

Wenner-Gren Stiftelserna

Swedish Research Council

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3