Abstract
Abstract Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebeeBombus terrestriswas used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size.Significance statementWhile anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebeeBombus terrestrisand that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献