Abstract
AbstractMigration is a life-history trait that shapes individual-by-environment interactions, affecting fitness. Currently, many species are changing their migration strategies, stressing the need to identify and better understand the behavioral correlates of migration. As a partial migrant, the noctule bat, Nyctalus noctula, allows for rare intra-specific investigations of the potential behavioral causes (or consequences) of variation in migration. Here, we combined in-situ behavioral assays with stable isotope analyses to investigate whether spatial and acoustic responses to a roost-like novel environment correlate with migration strategy (local or distant). Given a migrant’s more frequent exposure to novel environments, we predicted migrants would enter a novel environment more quickly and show stronger spatial and acoustic exploration activity. However, individuals of local and distant origin did not differ in acoustic exploration (call activity per unit space), nor, contrasting to several bird studies, in spatial activity (number of chambers visited). Surprisingly, local individuals were more likely than migrants to enter the novel environment. Our findings suggest that small-scale exploration does not vary with migration, potentially because of similar selection pressures across migration strategies on small-scale exploration (e.g., exploration of roosts) as opposed to large-scale. Yet, our findings on the likelihood of entering a novel environment suggest that locals may be more risk-taking. Repeated measures would be necessary to determine if personality differences are underlying these responses. Our unique approach, combining behavioral assays with isotopic geolocation, gave us novel insight into an elusive taxon, highlighting the importance of studying behavioral correlates of migration across various taxa.
Funder
Alexander von Humboldt-Stiftung
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Arnekleiv Ø, Eldegard K, Moa PF, Eriksen LF, Nilsen EB (2022) Drivers and consequences of partial migration in an alpine bird species. Ecol Evol 12:e8690. https://doi.org/10.1002/ece3.8690
2. Baerwald EF, Patterson WP, Barclay RMR (2014) Origins and migratory patterns of bats killed by wind turbines in southern Alberta: evidence from stable isotopes. Ecosphere 5:1–17. https://doi.org/10.1890/ES13-00380.1
3. Barclay RMR, Kalcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, Brigham RM (1996) Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal 77:1102–1106. https://doi.org/10.2307/1382791
4. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348. https://doi.org/10.1007/S00442-004-1813-Y
5. Brunet-Rossinni AK, Wilkinson GS (2009) Methods for age estimation and the study of senescence in bats. In: Kunz T, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University, Baltimore, pp 315–325