Grouped circular data in biology: advice for effectively implementing statistical procedures

Author:

Landler Lukas,Ruxton Graeme D.,Malkemper E. PascalORCID

Abstract

Abstract The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem. Significance statement Circular data are widespread across biological disciplines, e.g. in orientation studies or circadian rhythms. Often these data are rounded to the nearest 1–10 degrees. We have shown previously that this leads to an inflation of false-positive results when testing whether the data is significantly different from a random distribution using the Rao test. Here we present a modification that avoids this increase in false-positives for rounded data while retaining statistical power for a variety of tests. In sum, we provide comprehensive guidance on how best to test for departure from uniformity in non-continuous data.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference20 articles.

1. Agostinelli C, Lund U (2017) R package circular: Circular Statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/

2. Agostinelli C, Lund U (2018) R package CircStats: Circular Statistics (version 0.2-6). https://cran.r-project.org/web/packages/CircStats/

3. Batschelet E (1981) Circular statistics in biology. Academic Press, London

4. Dwass M (1957) Modified randomization tests for nonparametric hypotheses. Ann Math Stat 28:181–187

5. Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, Cambridge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3