Micropropagation and GC–MS analysis of bioactive compounds in bulbs and callus of white squill

Author:

El-Naggar Hany M.ORCID,Shehata Ashraf M.,Morsi Mennat-Allah A.

Abstract

AbstractMedicinal herbs are the main source of bioactive compounds used in the medical industry. White squill (Urginea maritima) is an important medicinal and ornamental plant cultivated in the Mediterranean region. This study reports an efficient protocol for in vitro propagation of Urginea and investigates important bioactive compounds present in the bulbs and in vitro–produced callus. The least number of days for callus induction and shoot regeneration was achieved with Murashige and Skoog (MS) basal media supplemented with 1.0 mg L−1 1-naphthaleneacetic acid (NAA) plus 0.1 mg L−1 6-benzylaminopurine (BAP) and 1.0 mg L−1 NAA plus 0.4 mg L−1 BAP, respectively, while the highest number of shoots and fresh weight were obtained at medium supplemented with 1.0 mg L−1 NAA plus 0.5 mg L−1 BAP. Gas chromatography-mass spectrometry (GC–MS) analysis of Urginea bulb methanol extract showed the existence of important secondary metabolites, such as palmitic acid (C16H32O2), 9-hexadecenoic acid (C16H30O2), phthalic acid 2-ethylhexyl propyl ester (C19H28O4), tetradecanoic acid (C14H28O2), undecanoic acid (C11H22O2), and oleic acid (C18H34O2), in addition to other important compounds, such as 13-heptadecyn-1-ol, 9,12-octadecadienoic acid, 1-monolinoleoylglycerol trimethylsilyl ether, 2-methyl-1-hexadecanol, and octadecanoic acid. Callus methanol extracts showed a reduction in the percentages of most phyto-components compared to bulb extract except for oleic acid, 3-(octadecyloxy) propyl ester and 3-hydroxydodecanoic acid; on the other hand, some important compounds were detected only in callus extract possessing anti-cancer, antiviral, and anti-inflammatory effects, such as farnesol (C15H26O), 7-methyl-Z-tetradecen-1-ol acetate (C17H32O2), ethyl iso-allocholate (C26H44O5), 4-trifluoroacetoxypentadecane (C17H31F3O2), and 2-hydroxyhexadecanoic acid (C16H32O3).

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3