Quantification of endogenous phytochemicals and determination of their exogenous effects in somatic embryogenesis pathways of white and water yams

Author:

Ossai Chukwunalu O.,Balogun Morufat O.,Maroya Norbert G.,Sonibare Mubo A.

Abstract

AbstractIn vitro propagation of yam via organogenesis is constrained with low multiplication rate. Somatic embryogenesis (SE) has shown rapid multiplication potentials in yam. However, it has not been adopted by practical seed system scenarios due to genotype specificity. Reports have shown that SE is regulated endogenously by phytochemicals, but this is yet to be elucidated for yam. This study identified, quantified endogenous, and evaluated effects of exogenous application of selected identified phytochemicals in yam SE. Callus was induced from in vitro axillary bud explants of three Dioscorea rotundata genotypes in Murashige and Skoog (MS) medium containing 9.1 µM 2,4-dichlorophenoxyacetic acid and 5.4 µM naphthaleneacetic acid. Plantlets were regenerated using MS medium containing 4.4 µM benzylaminopurine and 34.0 µM uniconazole-P. Endogenous phytochemicals associated with axillary bud, calluses, and plantlets were identified and quantified using GC/MS. Effect of selected identified phytochemicals on the genotypes was investigated in a 5 × 6 factorial in completely randomized design (r = 3). Data taken on plantlet regeneration was analyzed using ANOVA at α0.05. A total of 27, 22, and 35 phytochemicals were identified in Kpamyo, Ekiti2a, and Asiedu, respectively. Hexamethylcyclotrisiloxane (36.4%, Kpamyo), Tris-tert-butyldimethylsilyloxy-arsane (59.3%, Ekiti2a), and 4-methyl-2-trimethylsililoxy-acetophenone (52.7%, Asiedu) were highest in callus. N-Methyl-1-adamantaneacetamide (31.8%, Kpamyo) and Tris-tert-butyldimethylsilyloxy-arsane (52.7%, Ekiti2a, Asiedu) were highest in plantlets while Tris-tert-butyldimethylsilyloxy-arsane (41.2%, Kpamyo), hexamethylcyclotrisiloxane (55.8%, Ekiti2a), and erythro-9,10-dibromopentacosane (38.9%, Asiedu) were highest in axillary bud. Plantlet regeneration differed significantly among phytochemicals and ranged from 0.7 ± 0.3 (control) to 4.5 ± 0.5 (40.5 µM phenylacetic acid). Also, genotype × phytochemical interactions on number of plantlets regenerated were significant, and mean values ranged from 0.0 ± 0.0 (TDa2014, 4.8 µM decamethyltetrasiloxane) to 7.0 ± 1.7 (TDa2014, 40.5 µM phenylacetic acid). The application of 40.5 µM phenylacetic acid enhanced plantlet regeneration in Kpamyo and TDa2014 by 5.39% and 343.04%, respectively.

Funder

BMGF

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3