Link prediction for ex ante influence maximization on temporal networks

Author:

Yanchenko Eric,Murata Tsuyoshi,Holme Petter

Abstract

AbstractInfluence maximization (IM) is the task of finding the most important nodes in order to maximize the spread of influence or information on a network. This task is typically studied on static or temporal networks where the complete topology of the graph is known. In practice, however, the seed nodes must be selected before observing the future evolution of the network. In this work, we consider this realistic ex ante setting where p time steps of the network have been observed before selecting the seed nodes. Then the influence is calculated after the network continues to evolve for a total of $$T>p$$ T > p time steps. We address this problem by using statistical, non-negative matrix factorization and graph neural networks link prediction algorithms to predict the future evolution of the network, and then apply existing influence maximization algorithms on the predicted networks. Additionally, the output of the link prediction methods can be used to construct novel IM algorithms. We apply the proposed methods to eight real-world and synthetic networks to compare their performance using the susceptible-infected (SI) diffusion model. We demonstrate that it is possible to construct quality seed sets in the ex ante setting as we achieve influence spread within 87% of the optimal spread on seven of eight network. In many settings, choosing seed nodes based only historical edges provides results comparable to the results treating the future graph snapshots as known. The proposed heuristics based on the link prediction model are also some of the best-performing methods. These findings indicate that, for these eight networks under the SI model, the latent process which determines the most influential nodes may not have large temporal variation. Thus, knowing the future status of the network is not necessary to obtain good results for ex ante IM.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on influence maximization models;Expert Systems with Applications;2024-08

2. Influence maximization on temporal networks: a review;Applied Network Science;2024-05-21

3. IM-META: Influence Maximization Using Node Metadata in Networks With Unknown Topology;IEEE Transactions on Network Science and Engineering;2024-05

4. TBCELF: Temporal Budget-Aware Influence Maximization;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3