Information cascade final size distributions derived from urn models

Author:

Oida Kazumasa

Abstract

AbstractBipolarization is a phenomenon in which either a large or very small information cascade appears randomly when the retweet rate is high. This phenomenon, which has been observed only in simulations, has the potential to significantly advance the prediction of final cascade sizes because forecasters need only focus on the two peaks in the final cascade size distribution rather than considering the effects of various details, such as network structure and user behavioral patterns. The phenomenon also suggests the difficulty of identifying factors that lead to the emergence of large-scale cascades. To verify the existence of bipolarization, this paper theoretically derives mathematical expressions of the cascade final size distribution using urn models, which simplify the diffusion behavior of actual online social networks. Under the assumption of infinite network size, the distribution exhibits power-law behavior, consistent with the results of existing diffusion models and previous Twitter analytical outcomes. Under the assumption of finite network size, bipolarization is observed.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Driven Exploration of Structural Virality and Influencing Elements in Online Information Diffusal;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3