Abstract
AbstractBipolarization is a phenomenon in which either a large or very small information cascade appears randomly when the retweet rate is high. This phenomenon, which has been observed only in simulations, has the potential to significantly advance the prediction of final cascade sizes because forecasters need only focus on the two peaks in the final cascade size distribution rather than considering the effects of various details, such as network structure and user behavioral patterns. The phenomenon also suggests the difficulty of identifying factors that lead to the emergence of large-scale cascades. To verify the existence of bipolarization, this paper theoretically derives mathematical expressions of the cascade final size distribution using urn models, which simplify the diffusion behavior of actual online social networks. Under the assumption of infinite network size, the distribution exhibits power-law behavior, consistent with the results of existing diffusion models and previous Twitter analytical outcomes. Under the assumption of finite network size, bipolarization is observed.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI-Driven Exploration of Structural Virality and Influencing Elements in Online Information Diffusal;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01