Unsupervised relational inference using masked reconstruction

Author:

Großmann Gerrit,Zimmerlin Julian,Backenköhler Michael,Wolf Verena

Abstract

Abstract Problem setting Stochastic dynamical systems in which local interactions give rise to complex emerging phenomena are ubiquitous in nature and society. This work explores the problem of inferring the unknown interaction structure (represented as a graph) of such a system from measurements of its constituent agents or individual components (represented as nodes). We consider a setting where the underlying dynamical model is unknown and where different measurements (i.e., snapshots) may be independent (e.g., may stem from different experiments). Method Our method is based on the observation that the temporal stochastic evolution manifests itself in local patterns. We show that we can exploit these patterns to infer the underlying graph by formulating a masked reconstruction task. Therefore, we propose (raph nference etwork rchitecture), a machine learning approach to simultaneously learn the latent interaction graph and, conditioned on the interaction graph, the prediction of the (masked) state of a node based only on adjacent vertices. Our method is based on the hypothesis that the ground truth interaction graph—among all other potential graphs—allows us to predict the state of a node, given the states of its neighbors, with the highest accuracy. Results We test this hypothesis and demonstrate ’s effectiveness on a wide range of interaction graphs and dynamical processes. We find that our paradigm allows to reconstruct the ground truth interaction graph in many cases and that outperforms statistical and machine learning baseline on independent snapshots as well as on time series data.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3