Author:
Schrage Rico,Nieße Astrid
Abstract
AbstractThe share and variants of coupling points (CPs) between different energy carrier networks (such as the gas or power grids) are increasing, which results in the necessity of the analysis of so-called multi-energy systems (MES). One approach is to consider the MES as a graph network, in which coupling points are modeled as edges with energy efficiency as weight. On such a network, local coalitions can be formed using multi-agent systems leading to a dynamic graph partitioning, which can be a prerequisite for the efficient decentralized system operation. However, the graph can not be considered static, as the energy units representing CPs can shut down, leading to network decoupling and affecting graph partitions. This paper aims to evaluate the effect of network adaptivity on the dynamics of an exemplary coalition formation approach from a complex network point of view using a case study of a benchmark power network extended to an MES. This study shows: first, the feasibility of complex network modeling of MES as a cyber-physical system; second, how the coalition formation system behaves, how the coupling points impact this system, and how these impact metrics relate to the CP node attributes.
Funder
Deutsche Forschungsgemeinschaft
Carl von Ossietzky Universität Oldenburg
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献