Local topological features of robust supply networks

Author:

Lyutov Alexey,Uygun Yilmaz,Hütt Marc-Thorsten

Abstract

AbstractThe design of robust supply and distribution systems is one of the fundamental challenges at the interface of network science and logistics. Given the multitude of performance criteria, real-world constraints, and external influences acting upon such a system, even formulating an appropriate research question to address this topic is non-trivial. Here we present an abstraction of a supply and distribution system leading to a minimal model, which only retains stylized facts of the systemic function and, in this way, allows us to investigate the generic properties of robust supply networks. On this level of abstraction, a supply and distribution system is the strategic use of transportation to eliminate mismatches between production patterns (i.e., the amounts of goods produced at each production site of a company) and demand patterns (i.e., the amount of goods consumed at each location). When creating networks based on this paradigm and furthermore requiring the robustness of the system with respect to the loss of transportation routes (edge of the network) we see that robust networks are built from specific sets of subgraphs, while vulnerable networks display a markedly different subgraph composition. Our findings confirm a long-standing hypothesis in the field of network science, namely, that network motifs—statistically over-represented small subgraphs—are informative about the robust functioning of a network. Also, our findings offer a blueprint for enhancing the robustness of real-world supply and distribution systems.

Funder

Jacobs University Bremen gGmbH

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3