Abstract
AbstractA popular approach for understanding complex systems is a network analytic one: the system’s entities and their interactions are represented by a graph structure such that readily available methods suitable for graph structures can be applied. A network representation of a system enables the analysis of indirect effects: if A has an impact on B, and B has an impact on C, then, A also has an impact on C. This is often due to some kind of process flowing through the network, for example, pieces of informations or viral infections in social systems, passenger flows in transportation systems, or traded goods in economic systems. We argue that taking into account the actual usage of the system additionally to the static network representation of the system can yield interesting insights: first, the network representation and applicable network methods cannot be chosen independently from the network process of interest (Borgatti 2005; Dorn et al. 2012; Zweig 2016; Butts 2009). Therefore, focussing on the relevant network process in an early stage of the research project helps to determine suitable network representations and methods in order to obtain meaningful results (we call this approach process-driven network analysis). Second, many network methods assume that the spreading of some entity follows shortest or random paths. However, we show that not all flows are well approximated by this. In these cases, incorporating the network usage creates a real addition of knowledge to the static aggregated network representation.NoteThis is an extended and revised version of a conference article (Bockholt and Zweig 2019), published and presented at COMPLEX NETWORKS 2019.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献