Abstract
AbstractThe alignment strength of a graph matching is a quantity that gives the practitioner a measure of the correlation of the two graphs, and it can also give the practitioner a sense for whether the graph matching algorithm found the true matching. Unfortunately, when a graph matching algorithm fails to find the truth because of weak signal, there may be “phantom alignment strength” from meaningless matchings that, by random noise, have fewer disagreements than average (sometimes substantially fewer); this alignment strength may give the misleading appearance of significance. A practitioner needs to know what level of alignment strength may be phantom alignment strength and what level indicates that the graph matching algorithm obtained the true matching and is a meaningful measure of the graph correlation. The Phantom Alignment Strength Conjecture introduced here provides a principled and practical means to approach this issue. We provide empirical evidence for the conjecture, and explore its consequences.
Funder
Defense Sciences Office, DARPA
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Reference56 articles.
1. Arnatkevic̆iūtė A, Fulcher BD, Pocock R, Fornito A (2018) Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput Biol 14(2):1005989. https://doi.org/10.1371/journal.pcbi.1005989
2. Arroyo J, Athreya A, Cape J, Chen G, Priebe CE, Vogelstein JT (2019) Inference for multiple heterogeneous networks with a common invariant subspace. arXiv preprint arXiv:1906.10026
3. Babai L (2016) Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing. ACM, pp 684–697
4. Barak B, Chou C, Lei Z, Schramm T, Sheng Y (2019) (nearly) efficient algorithms for the graph matching problem on correlated random graphs. In: Advances in neural information processing systems, pp 9190–9198
5. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033. https://doi.org/10.1126/science.282.5396.2028 (9851919)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献