The phantom alignment strength conjecture: practical use of graph matching alignment strength to indicate a meaningful graph match

Author:

Fishkind Donniell E.ORCID,Parker Felix,Sawczuk Hamilton,Meng Lingyao,Bridgeford Eric,Athreya Avanti,Priebe Carey,Lyzinski Vince

Abstract

AbstractThe alignment strength of a graph matching is a quantity that gives the practitioner a measure of the correlation of the two graphs, and it can also give the practitioner a sense for whether the graph matching algorithm found the true matching. Unfortunately, when a graph matching algorithm fails to find the truth because of weak signal, there may be “phantom alignment strength” from meaningless matchings that, by random noise, have fewer disagreements than average (sometimes substantially fewer); this alignment strength may give the misleading appearance of significance. A practitioner needs to know what level of alignment strength may be phantom alignment strength and what level indicates that the graph matching algorithm obtained the true matching and is a meaningful measure of the graph correlation. The Phantom Alignment Strength Conjecture introduced here provides a principled and practical means to approach this issue. We provide empirical evidence for the conjecture, and explore its consequences.

Funder

Defense Sciences Office, DARPA

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference56 articles.

1. Arnatkevic̆iūtė A, Fulcher BD, Pocock R, Fornito A (2018) Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput Biol 14(2):1005989. https://doi.org/10.1371/journal.pcbi.1005989

2. Arroyo J, Athreya A, Cape J, Chen G, Priebe CE, Vogelstein JT (2019) Inference for multiple heterogeneous networks with a common invariant subspace. arXiv preprint arXiv:1906.10026

3. Babai L (2016) Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing. ACM, pp 684–697

4. Barak B, Chou C, Lei Z, Schramm T, Sheng Y (2019) (nearly) efficient algorithms for the graph matching problem on correlated random graphs. In: Advances in neural information processing systems, pp 9190–9198

5. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033. https://doi.org/10.1126/science.282.5396.2028 (9851919)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3