A novel regularized weighted estimation method for information diffusion prediction in social networks

Author:

Mashayekhi Yoosof,Rezvanian AlirezaORCID,Vahidipour S. MehdiORCID

Abstract

AbstractIn recent years, social networks have become popular among Internet users, and various studies have been performed on the analysis of users’ behavior in social networks. Information diffusion analysis is one of the leading fields in social network analysis. In this context, users are influenced by other users in the social network, such as their friends. User behavior is analyzed using several models designed for information diffusion modeling and prediction. In this paper, first, the problem of estimating the diffusion probabilities for the independent cascade model is studied. We propose a method for estimating diffusion probabilities. This method assigns a weight to each individual diffusion sample within a network. To account for the different effects of diffusion samples, several weighting schemes are proposed. Afterward, the proposed method is applied to real cascade datasets such as Twitter and Digg. We try to estimate diffusion probabilities for the independent cascade model considering the continuous time of nodes’ infections. The results of our evaluation of our methods are presented based on several datasets. The results show the high performance of our methods in terms of training time as well as other metrics such as mean absolute error and F-measure.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3