Deterministic random walk model in NetLogo and the identification of asymmetric saturation time in random graph

Author:

Chatterjee Ayan,Cao Qingtao,Sajadi Amirhossein,Ravandi Babak

Abstract

AbstractInteractive programming environments are powerful tools for promoting innovative network thinking, teaching science of complexity, and exploring emergent phenomena. This paper reports on our recent development of the deterministic random walk model in NetLogo, a leading platform for computational thinking, eco-system thinking, and multi-agent cross-platform programming environment. The deterministic random walk is foundational to modeling dynamical processes on complex networks. Inspired by the temporal visualizations offered in NetLogo, we investigated the relationship between network topology and diffusion saturation time for the deterministic random walk model. Our analysis uncovers that in Erdős–Rényi graphs, the saturation time exhibits an asymmetric pattern with a considerable probability of occurrence. This behavior occurs when the hubs, defined as nodes with relatively higher number of connections, emerge in Erdős–Rényi graphs. Yet, our analysis yields that the hubs in Barabási–Albert model stabilize the the convergence time of the deterministic random walk model. These findings strongly suggest that depending on the dynamical process running on complex networks, complementing characteristics other than the degree need to be taken into account for considering a node as a hub. We have made our development open-source, available to the public at no cost athttps://github.com/bravandi/NetLogo-Dynamical-Processes.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3