Towards explainable community finding

Author:

Sadler Sophie,Greene Derek,Archambault Daniel

Abstract

AbstractThe detection of communities of nodes is an important task in understanding the structure of networks. Multiple approaches have been developed to tackle this problem, many of which are in common usage in real-world applications, such as in public health networks. However, clear insight into the reasoning behind the community labels produced by these algorithms is rarely provided. Drawing inspiration from the machine learning literature, we aim to provide post-hoc explanations for the outputs of these algorithms using interpretable features of the network. In this paper, we propose a model-agnostic methodology that identifies a set of informative features to help explain the output of a community finding algorithm. We apply it to three well-known algorithms, though the methodology is designed to generalise to new approaches. As well as identifying important features for a post-hoc explanation system, we report on the common features found made by the different algorithms and the differences between the approaches.

Funder

UK Research and Innovation

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3