Social networks for enhanced player churn prediction in mobile free-to-play games

Author:

Óskarsdóttir María,Gísladóttir Kristín Eva,Stefánsson Ragnar,Aleman Damian,Sarraute Carlos

Abstract

AbstractSocial networks have been shown to enhance player experience in online games and to be important for the players, who often build complex communities. In online and mobile games, the behavior of players is bursty as they tend to play intensively at first for a short time and then quit playing altogether. Such players are known as churners. In the literature, several attempts have been made at predicting player churn in online and mobile games using behavioral features from the games’ player logs as input in supervised machine learning models. Previous research shows that information from social networks provides alternative and significant information when predicting churn, and yet the importance of networks has not been fully researched in mobile gaming. In this research, we study player churn in a mobile free-to-play game with one-versus-one matches. We build two types of networks based on how two players are matched. We train churn prediction models with features extracted from the networks to evaluate their predictive performance in terms of churn. Furthermore, we predict churn using the players’ behavioral features during their first day of game playing. According to our results, the network features greatly increase the predictive performance of the models, indicating that they carry alternative information about intention to churn. In addition, the first-day features are quite predictive, which means that first day activity is sufficient to predict churn of players quite accurately, validating the bursty behavior. Our research gives an indication of which aspects of game playing are associated with churn and allow us to study influence and social factors in mobile games.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3