BC tree-based spectral sampling for big complex network visualization

Author:

Hu Jingming,Chu Tuan Tran,Hong Seok-Hee,Chen Jialu,Meidiana Amyra,Torkel Marnijati,Eades Peter,Ma Kwan-Liu

Abstract

AbstractGraph sampling methods have been used to reduce the size and complexity of big complex networks for graph mining and visualization. However, existing graph sampling methods often fail to preserve the connectivity and important structures of the original graph. This paper introduces a new divide and conquer approach to spectral graph sampling based on graph connectivity, called the BC Tree (i.e., decomposition of a connected graph into biconnected components) and spectral sparsification. Specifically, we present two methods, spectral vertex sampling $$BC\_SV$$ B C _ S V and spectral edge sampling $$BC\_SS$$ B C _ S S by computing effective resistance values of vertices and edges for each connected component. Furthermore, we present $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D , graph connectivity-based distributed algorithms for spectral sparsification and graph drawing respectively, aiming to further improve the runtime efficiency of spectral sparsification and graph drawing by integrating connectivity-based graph decomposition and distributed computing. Experimental results demonstrate that $$BC\_SV$$ B C _ S V and $$BC\_SS$$ B C _ S S are significantly faster than previous spectral graph sampling methods while preserving the same sampling quality. $$DBC\_SS$$ D B C _ S S and $$DBC\_GD$$ D B C _ G D obtain further significant runtime improvement over sequential approaches, and $$DBC\_GD$$ D B C _ G D further achieves significant improvements in quality metrics over sequential graph drawing layouts.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference36 articles.

1. Arleo A, Didimo W, Liotta G, Montecchiani F (2019) A distributed multilevel force-directed algorithm. IEEE Trans Parallel Distrib Syst 30(4):754–765. https://doi.org/10.1109/TPDS.2018.2869805

2. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11):3747–3752

3. Davis TA, Hu Y (2011) The university of Florida sparse matrix collection. ACM Trans Math Softw (TOMS) 38(1):1

4. Eades P (1984) A heuristic for graph drawing. Congr Numer 42:149–160

5. Eades P (1991) Drawing free trees. International Institute for Advanced Study of Social Information Science, Fujitsu Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3