A generalized configuration model with degree correlations and its percolation analysis

Author:

Lee Duan-ShinORCID,Chang Cheng-Shang,Zhu Miao,Li Hung-Chih

Abstract

AbstractIn this paper we present a generalization of the classical configuration model. Like the classical configuration model, the generalized configuration model allows users to specify an arbitrary degree distribution. In our generalized configuration model, we partition the stubs in the configuration model into b blocks of equal sizes and choose a permutation function h for these blocks. In each block, we randomly designate a number proportional to q of stubs as type 1 stubs, where q is a parameter in the range [0,1]. Other stubs are designated as type 2 stubs. To construct a network, randomly select an unconnected stub. Suppose that this stub is in block i. If it is a type 1 stub, connect this stub to a randomly selected unconnected type 1 stub in block h(i). If it is a type 2 stub, connect it to a randomly selected unconnected type 2 stub. We repeat this process until all stubs are connected. Under an assumption, we derive a closed form for the joint degree distribution of two random neighboring vertices in the constructed graph. Based on this joint degree distribution, we show that the Pearson degree correlation function is linear in q for any fixed b. By properly choosing h, we show that our construction algorithm can create assortative networks as well as disassortative networks. We present a percolation analysis of this model. We verify our results by extensive computer simulations.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degree-degree Correlated Low-density Parity-check Codes Over a Binary Erasure Channel;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

2. A Generalized Configuration Model With Triadic Closure;IEEE Transactions on Network Science and Engineering;2023-03-01

3. Epidemic Spreading in a Social Network With Facial Masks Wearing Individuals;IEEE Transactions on Computational Social Systems;2021-12

4. Degree-Degree Correlation in Networks with Preferential Attachment Based Growth;Complex Networks XII;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3