Business text classification with imbalanced data and moderately large label spaces for digital transformation

Author:

Arslan MuhammadORCID,Cruz ChristopheORCID

Abstract

AbstractDigital transformation refers to an organization’s use of digital technology to improve its products, services, and operations, aligning them with evolving business requirements. To demonstrate this transformative process, we present a real-life case study where a company seeks to automate the classification of their textual data rather than relying on manual methods. Transitioning to automated classification involves deploying machine learning models, which rely on pre-labeled datasets for training and making predictions on new data. However, upon receiving the dataset from the company, we faced challenges due to the imbalanced distribution of labels and moderately large label spaces. To tackle text classification with such a business dataset, we evaluated four distinct methods for multi-label text classification: fine-tuned Bidirectional Encoder Representations from Transformers (BERT), Binary Relevance, Classifier Chains, and Label Powerset. The results revealed that fine-tuned BERT significantly outperformed the other methods across key metrics like Accuracy, F1-score, Precision, and Recall. Binary Relevance also displayed competence in handling the dataset effectively, while Classifier Chains and Label Powerset exhibited comparatively less impressive performance. These findings highlight the remarkable effectiveness of fine-tuned BERT model and the Binary Relevance classifier in multi-label text classification tasks, particularly when dealing with imbalanced training datasets and moderately large label spaces. This positions them as valuable assets for businesses aiming to automate data classification in the digital transformation era.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3