Abstract
AbstractThis study tackles the problem of extracting the node roles in uncertain graphs based on network motifs. Uncertain graphs are useful for modeling information diffusion phenomena because the presence or absence of edges is stochastically determined. In such an uncertain graph, the node role also changes stochastically according to the presence or absence of edges, so approximate calculation using a huge number of samplings is common. However, the calculation load is very large, even for a small graph. We propose a method to extract uncertain node roles with high accuracy and high speed by ensembling a large number of sampled graphs and efficiently searching for all other transitionable roles. This method provides highly accurate results compared to simple sampling and ensembling methods that do not consider the transition to other roles. In our evaluation experiment, we use real-world graphs artificially assigned uniform and non-uniform edge existence probabilities. The results show that the proposed method outperforms an existing method previously reported by the authors, which is the basis of the proposed method, as well as another current method based on the state-of-the-art algorithm, in terms of efficiency and accuracy.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary