Examining the importance of existing relationships for co-offending: a temporal network analysis in Bogotá, Colombia (2005–2018)

Author:

Nieto Alberto,Davies Toby,Borrion Hervé

Abstract

AbstractThis study aims to improve our understanding of criminal accomplice selection by studying the evolution of co-offending networks—i.e., networks that connect those who commit crimes together. To this end, we tested four growth mechanisms (popularity, reinforcement, reciprocity, and triadic closure) on three components observed in a network connecting criminal investigations ($$M = 286$$M=286K) with adult offenders ($$N = 274$$N=274K) in Bogotá (Colombia) between 2005 and 2018. The first component had 4286 offenders (component ‘A’), the second 227 (‘B’), and the third component 211 (‘C’). The evolution of these components was examined using temporal information in tandem with discrete choice models and simulations to understand the mechanisms that could explain how these components grew. The results show that they evolved differently during the period of interest. Popularity yielded negative statistically significant coefficients for ‘A’, suggesting that having more connections reduced the odds of connecting with incoming offenders in this network. Reciprocity and reinforcement yielded mixed results as we observed negative statistically significant coefficients in ‘C’ and positive statistically significant coefficients in ‘A’. Moreover, triadic closure produced positive, statistically significant coefficients in all the networks. The results suggest that a combination of growth mechanisms might explain how co-offending networks grow, highlighting the importance of considering offenders’ network-related characteristics when studying accomplice selection. Besides adding evidence about triadic closure as a universal property of social networks, this result indicates that further analyses are needed to understand better how accomplices shape criminal careers.

Funder

Fundación para el futuro de Colombia

University College London

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3